TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.



FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, ESTADOS DE GRACELI TÉRMICOS E ESTADOS DOS ELEMENTOS QUÍMICO, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll * D
          
X
 [ESTADO QUÂNTICO].




Interações fundamentais

Ver artigo principal: Interações fundamentais

Todos os fenômenos físicos que ocorrem na natureza podem ser descritos em termos de quatro interações fundamentais. Elas são fundamentais no sentido de que não podem ser reduzidas a interações mais básicas. Cada interação descreve como uma dada característica, como a massa de uma partícula, ou conjunto de partículas, afeta outras partículas com essa mesma característica.

Segundo o modelo padrão, cada uma dessas interações é mediada pela troca de bósons entre as partículas na qual elas atuam. Essas partículas que mediam as interações são virtuais e, por isso, não podem ser observadas diretamente. Isso justifica o porquê de os efeitos dessas interações não serem sentidas instantaneamente, já que a maior velocidade que elas podem se propagar é com a velocidade da luz. Para que uma partícula virtual possa ser emitida sem violar a conservação de energia, a mesma deve ser reabsorvida em um intervalo de tempo tão curto quanto o permitido pelo princípio da incerteza. Porém, esses bósons mediadores podem ser tornar reais caso seja fornecida energia equivalente à energia de repouso deles.[2]

Consequentemente o alcance de uma dada interação está relacionado com a massa do bóson mediador. Assim, quanto maior a massa do bóson mediador, menor será o alcance da interação. Cada interação também apresenta um chamado tempo de interação, de forma que a troca de bósons virtuais é feita dentro desse tempo.

A intensidade de cada interação é definida pela sua constante de acoplamento, um parâmetro adimensional que serve para comparar as diferentes interações. No caso particular da interação eletromagnética, a constante de acoplamento é obtida a partir da expressão da energia potencial eletrostática entre duas cargas puntiformes divida pelor fator ħc.

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS

A constante de acoplamento da interação eletromagnética é também conhecida como a constante de estrutura fina , já substituindo os valores das constantes. Na tabela a seguir são apresentadas  características específicas de cada interação:[2]

InteraçãoBóson mediadorMassa ()FonteAlcance (m)Tempo de interação (s)Constante de acoplamento
ForteGlúon0Carga de cor
EletromagnéticaFóton0Carga elétrica
Fraca81,91Carga fraca
GravitacionalGráviton0Massa
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS





Em matemática, as equações de Yang-Mills-Higgs são um conjunto de equações parciais diferenciais não-lineares[1] para um campo de Yang-Mills[nota 1], dado por uma conexão, e um campo de Higgs[2], dado por uma seção de um fibrado vectorial. Estas equações são:

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


com o valor sobre o contorno

Essas equações são nomeados em homenagem a Chen Ning YangRobert L. Mills e Peter Higgs.



O Modelo Padrão predisse a existência dos bósons W e Z, dos glúons, do quark top e do quark charm antes que estas partículas fossem observadas. Suas propriedades preditas foram confirmadas experimentalmente com uma boa precisão.

O grande colisor de Elétron-Pósitron no CERN testou várias predições sobre a decaimento dos bósons Z, e foram confirmados.

Para ter uma ideia do sucesso do Modelo Padrão, uma comparação entre os valores medidos e preditos de algumas quantidades são mostrados na seguinte tabela:

QuantidadeMedido (GeV)Modelo Padrão (GeV)
Massa do bóson W80.387 ± 0.01980.390 ± 0.018
Massa do bóson Z91.1876 ± 0.002191.1874 ± 0.0021

Tabela

fermions levógeros (para esquerda) no Modelo Padrão
FermionSímboloCarga elétricaCarga fraca*Isospin fracoHipercargaCarga de cor*Massa**
Geração 1
Eletron-1-1/2-1/20.511 MeV
neutrino eletron0+1/2-1/2< 50 eV
Posítron1010.511 MeV
Antineutrino eletron000< 50 eV
Quark Up+2/3+1/2+1/6~5 MeV ***
Quark Down-1/3-1/2+1/6~10 MeV ***
Antiquark Up-2/30-2/3~5 MeV ***
Antiquark Down+1/30+1/3~10 MeV ***
Geração 2
Muon-1-1/2-1/2105.6 MeV
Neutrino muon0+1/2-1/2< 0.5 MeV
Anti-Muon101105.6 MeV
antineutrino Muon000< 0.5 MeV
Quark charme+2/3+1/2+1/6~1.5 GeV
Quark Estranho-1/3-1/2+1/6~100 MeV
Antiquark anti-charme-2/30-2/3~1.5 GeV
Antiquark anti-estranho+1/30+1/3~100 MeV
Geração 3
Tau-1-1/2-1/21.784 GeV
Neutrino tau0+1/2-1/2< 70 MeV
Anti-Tau1011.784 GeV
Antineutrino tau000< 70 MeV
Quark Top+2/3+1/2+1/6173 GeV
Quark Bottom-1/3-1/2+1/6~4.7 GeV
Antiquark Top-2/30-2/3173 GeV
Antiquark Bottom+1/30+1/3~4.7 GeV

* - Essas não são Cargas abelianas ordinárias que podem ser adicionadas, mas sim identificações de Representações de grupo dos Grupos de Lie.

** – A massa é realmente um acoplamento entre fermion dextrógeno e levógeno. Por exemplo, a massa de um elétron é realmente um acoplamento entre um elétron dextrógeno e levógeno, o qual é antiparticula de um positron levógeno. Também os neutrinos mostram a grande mistura entre seus acoplamentos de massa, então não é certo falar de massa do neutrino e no Sabor básico ou sugerir que o neutrino elétron levógeno e um neutrino elétron dextrógeno tem a mesma massa como esta tabela parece sugerir.

*** – O que é sempre medido experimentalmente são as massas dos baryons e hadrons e vários razões de seção transversal. Desde que os quarks não podem ser isolados por causa do confinamento QCD, a quantidade expressa é a suposta massa do quark na escala da renormalização de fase de transição QCD.


X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Os fermions podem ser agrupados em três gerações, a primeira consiste do elétron, quark up e down e o neutrino elétron. Toda a matéria ordinária é feita desta primeira geração de partículas; as gerações mais altas de partículas decaem rapidamente para a primeira geração e somente podem ser gerados por um curto tempo em experimentos de alta-energia. A razão para este arranjo em gerações é que os quatro fermions em cada geração comportam-se sempre exatamente como seus contrapontos na outra geração; a única diferença e suas massas. Por exemplo, o elétron e o muon têm sempre meio spin e carga elétrica unitária, mas o muon é cerca de 200 vezes mais massivo.

Os elétrons, os neutrino-eletron, e seus contrapontos em outras gerações, são chamados de "leptons", "partículas de interação fraca". Diferentes dos quarks, eles não possuem uma qualidade chamada "cor", e suas interações são somente eletromagnética e fraca, e diminuem com a distância. Por outro lado, a força forte ou cor entre os quarks se torna mais forte com a distância, tal que os quarks são sempre encontrado em combinações neutras chamadas de hadrons, num fenômeno conhecido como confinamento quark. Existem os fermionic baryons compostos de três quark (o proton e o neutron para começar são os exemplos mais familiares) e os mesons bosonico compostos de um par quark-antiquark (tais como os pions). A massa de cada agrupamento excede a massa de seus componentes devido a energia de ligação.






Para que uma quebra espontânea de simetria ocorra, deve necessariamente haver um sistema no qual existam diversos estados subsequentes com iguais probabilidades de ocorrer. Este sistema, como um todo, então é tratado como um sistema simétrico. Entretanto apenas um dos estados subsequentes deve ocorrer e toda a probabilidade dos inúmeros estados diversos é reduzida a zero, já que não há mais simetria. Então, é dito que a simetria do sistema foi espontaneamente quebrada.

Definição formal

Quando uma teoria é dita simétrica com respeito à um grupo simétrico, mas afirma que um elemento deste grupo é distinto, então uma quebra espontânea de simetria ocorreu, ou seja, pela teoria, não é necessário que se identifique o elemento e sim apenas que haja um elemento distinto.

Importância no modelo padrão

Ver artigo principal: Mecanismo de Higgs

Sem a quebra espontânea de simetria o modelo padrão prediz a existência de um determinado número de partículas. Entretanto, algumas destas partículas (os bosões W e Z, por exemplo) são preditos de não possuir massa, quando na realidade eles possuem massa. Esta era a maior falha do modelo até que o físico escocês Peter Higgs e outros propuseram, através do que ficou conhecido por mecanismo de Higgs, o uso da quebra espontânea de simetria para comportar massa nestas partículas. O mecanismo por sua vez prediz a existência de uma nova partícula, o bosão de Higgs. O bosão/bóson de Higgs foi detectado no LHC do CERN em Julho de 2012, com probabilidade maior que 5 sigmas de ser verdadeira tal identificação.

Uso na matemática

Gráfico conhecido por função potencial do chapéu mexicano.

Na matemática o uso mais comum da quebra espontânea de simetria é pelo uso da Função de Lagrange, a qual essencialmente indica como um sistema irá se comportar por meio de termos potenciais

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


É neste termo potencial  que a ação da quebra de simetria ocorre. Como demonstra o gráfico do chapéu mexicano

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Este termo potencial possui vários possíveis mínimos dados por

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


para qualquer real no intervalo . Este sistema também possui um estado do vácuo quântico que corresponde ao , este estado possui um grupo unitário simétrico. Entretanto, uma vez que o sistema atinja um estado específico no vácuo (que corresponda a um valor para ) a simetria será espontaneamente quebrada.



Na corrente principal da física atual, a Teoria de Tudo poderia unificar todas as interações fundamentais da natureza, que são consideradas como quatro: gravitação, a força nuclear forte, a força nuclear fraca e a eletromagnética. Porque a força forte pode transformar partículas elementares de uma classe a outra, a teoria de tudo deveria produzir uma profunda compreensão de vários diferentes tipos de partículas como de diferentes forças. O padrão previsível das teorias é o seguinte:

Teoria de Tudo
Gravidade
Força Eletronuclear (GUT)
Forças de Cor
Força Eletrofraca
Força Forte
Força Fraca
Eletromagnetismo
Força Elétrica
Força magnética

Adicionalmente às forças listadas aqui, a moderna cosmologia requer uma força inflacionáriaenergia escura, e também matéria escura composta de partículas fundamentais fora da cena do modelo padrão.


X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS





Equação de Dirac

Em 1928 Paul Dirac obteve uma equação relativística baseada em dois princípios básicos

  1. A equação deveria ser linear na derivada temporal;
  2. A equação deveria ser relativisticamente covariante.

A equação obtida por ele tinha a seguinte forma:

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde  e  não são números reais ou complexos, mas sim matrizes quadradas com N² componentes. Semelhantemente, as funções  são na verdade matrizes coluna da forma


Comentários

Postagens mais visitadas deste blog

TERCEIRA QUANTIZAÇÃO EDCTIE GRACELI EM manetismo e quantização de Landau

O ESTADOS FÍSICOS E QUÍMICOS ESTRUTURAIS ESPECÍFICOS DE GRACELI.